سرور G9

يکشنبه 6 آبان 1397
14:45
محمد

سرور G9 :

سرور DL380 G9

این سرور یکی از سرور های Rachmount شرکت اچ پی می باشد . کمپانی هیولت پاکارد این محصول را به گونه ای طراحی کرده است که بهترین عملکرد را در زمان اوج مصرف داشته باشد . DL380 G9 برای استفاده در هر محیطی ایده آل است و درصورت قرار گرفتن درون رک ، دو یونیت از فضای آن را اشغال می کند.

مزایا و قابلیت های سرور HP DL380 G9 :

**• قابلیت توسعه در شرایط کاری متفاوت

**• قابلیت بروز رسانی

**• قابلیت پیکربندی آسان

**• قابلیت دسترس پذیری آسان

**• پشتیبانی از یک گارانتی جامع


[ بازدید : 0 ] [ امتیاز : 3 ] [ امتیاز شما : ]

زیرو کلاینت چیست؟

يکشنبه 15 مهر 1397
15:42
محمد

زیرو کلاینت چیست؟

زیروکلاینت (به انگلیسی: Zero Client) به سیستمی اطلاق می‌شود که برای تحقق وظایف محاسباتی خود به سرور (Server) وابسته است. این مفهوم در برابر فت کلاینت (به انگلیسی: Fat Client) و تین کلاینت (Thin Client) قرار می‌گیرد که طوری طراحی شده تا تمام نیازهای خود را خودش برآورده کند. وظایفی که توسط خدمات دهنده فراهم می‌شود مختلف است، از فراهم آوردن ساختار پایدار داده (برای مثال برای گره‌های بدون دیسک) گرفته تا پردازش اطلاعات.

زیرو کلاینت مانند جزئی از یک زیرساخت کامپیوتری گسترده است، که در این زیرساخت کلاینتهای زیادی قدرت محاسباتی خود را با یک سرور به اشتراک گذاشته‌اند.

در اصل زیرو کلاینت‌ها فاقد رم (Ram) و هارد (HDD) به شکل موجود در PCها و TCها هستند و به همین دلیل دارای ظاهری کوچک و سبک بوده و قیمت بسیار نازل تری نسبت به آنها دارد. این سیستم‌ها صرفاً در شبکه‌هایی قابل استفاده خواهند بود که دارای سرور بوده (Server Base) و از طریق سرور برای آنها محدوده کابری تعریف گردد.

زیرو کلاینت، تین کلاینت ، مینی پیسی و اکسس ترمینال چه هستند و چه تفاوت هایی با یکدیگر دارند؟

  1. مینی پی سی: یعنی یک کامپیوتر شخصی کوچک و ضعیف که میتواند به تنهایی کار کند و دارای رم و سی پی یو و فضای ذخیره سازی است فقط کوچک شده و ضعیف شده ی یک رایانه ی معمولی است.
  2. تین کلاینت: همان مینی پی سی است ( اغلب، حتی کارشناسان امر و یا تولید کننده ها نیز این دستگاهها را با زیرو کلاینت اشتباه میگیرند)
  3. زیرو کلاینت: یک درگاه (درب و پنجره) است برای متصل شدن به یک رایانه ی مرکزی ، در واقع تمامی برنامه ها و سیستم عامل ها روی رایانه ی مرکزی نصب میشوند و کاربران از طریق این درگاه‌ها به آن رایانه ی مرکزی وصل شده و از آنها استفاده میکنند و منابع سخت افزاری مورد نیاز خود مانند RAM و CPU و فضای ذخیره سازی را از رایانه ی مرکزی میگیرند.

- دقت داشته باشید که منظور از کلمه ی زیرو اینست که این دستگاهها قابلیت ارائه هیچگونه سرویس مناسب برای کاربر را در غیاب یک سرویس دهنده ی اصلی ندارند- و یا به عبارت دیگر بدون وجود سرور قادر نیستند به نیازهای کاربر پاسخ گویند.

تفاوت زیرو کلاینت‌ها با یکدیگر در چیست؟

زیرو کلاینتها بسته به نوع ارتباطی که با کامپیوتر مرکزی برقرار میکنند و نحوه ی عملکردشان در چند خانواده ی متفاوت قرار میگیرند : انواع زیرو کلاینت

زیرو کلاینت های RDP : این زیرو کلاینت ها برای ارتباطشان با رایانه ی مرکزی از استاندارد
مایکروسافتی اتصال از راه ادور به نام RDP استفاده میکنند،
و میتوانند همگی به یک سیستم عامل یا چند سیستم عامل متصل شوند.
زیرو کلاینت های VDI : این زیرو کلاینت ها حتما به سرور و بستر سرور مجازی نیاز دارند
و با استفاده از پروتکل های PCoIP , ICA , HDX به سرور مجازی متصل میشوند
( بستر مجازی سیتریکس و یا وی ام ور) و از این طریق میتوانند میز کار مجازی کاربر
( Virtual Desktop) و یا برنامه های مخصوص هر کاربر را برای وی ارائه دهند.
زیرو کلاینت های DDP : این استاندارد که جدید ترین استاندارد در حوزه ی مجازی سازی
دسکتاپ میباشد، متعلق به کمپانی وی کلود پوینت است
و به اینصورت است که میتوان به یک کاربر یا یک مجموعه از کاربران یک سیستم عامل
اختصاص داد،
با حداقل منابع سخت افزاری مورد نیاز (میتوان یک رایانه ی رومیزی را در اختیار بیش از ۳۰ کاربر
قرار داد) و همینطور کمترین میزان مصرفف پنای باند شبکه.

( تفاوتهای بسیاری با استاندارد RDP دارد که به تفصیل در ادامه شرح داده خواهد شد)

زیرو کلاینت های رسیوری : این خانواده از زیرو کلاینت ها که خانواده ی پر جمعیتی هم هستند از

نظر تنوع برند و امکانات به این صورت عمل میکنند

که دستگاه زیرو کلاینت صرفا یکسری امکانات خاص را در اختیار کاربر قرار میدهد

بعنوان مثال: فقط یک مرورگر اینترنت در ختیار کاربر قرار میدهد –
یا : بر روی رایانه ی مرکزی یک نرم افزاری نصب میشود که آن نرم افزار صرفا تعدادیی برنامه
را در اختیار هر کاربر قرار میدهد.

هماگونه که رایانه های با یکدیگر از نظر قدرت و ظرفیت و اندازه و شکل ظاهری متفاوت هستند، همین تفاوت ها در تین کلاینت ها نیز میباشد

– در واقع تین کلاینت یا مینی پی سی هم همان رایانه ی معمولی هستند که فقط کوچکتر و ضعیف تر شده اند.

و همگی در خانواده ی رایانه های شخصی قرار میگیرند و مقایسه بین آنها همانند مقایسه بین رایانه های رومیزی میباشد یعنی مواردی از قبیل نوع و توان پردازنده، میزان و سرعت رم و مواردی از این دست در آنها مقایسه میشود و کاربری آنها یکسان است.

برای استفاده از راهکار VDI بهتر است از زیرو کلاینت های مبتنی بر ARM استفاده شود یا Tradici ؟

تفاوت پردازنده های ARM و Teradici

– در ابتدا به اختصار به معرفی دو کمپانی مذکور میپردازیم:

  • کپانی ترادیسی در سال ۲۰۰۴ در زمینه فشرده سازی صوت و تصویر و انتقال آن فعالیت خود را شروع کرده و در سال ۲۰۰۸ اولین چیپست خود را مبتنی بر پروتکل PCoIP به بازار ارائه نمود

که برای اولین بار توسط کمپانی های HP, Dell-Wyseدر تین کلاینتها و زیرو کلاینتها به کار برده شد.

  • کمپانی آرم از سال ۱۹۸۰ تا کنون مشغول به گسترش پردازنده های مبتنی بر تکنولوژی آرم است

که به دلیل مصرف انرژی پایین بیشتر در دستگاههای قابل حمل استفاده میشود

که با رشد روز افزون دستگاههای موبایل و نیاز به پردازنده های گرافیکی قویتر در آنها، این کمپانی از سال ۲۰۱۴ اقدام به مجتمع سازی پردازنده های قدرتمند گرافیکی در سی پی یو های خود کرده است،

که کمپانی هایی همچون APPLE در تراشه‌های اختصاصی خود، SAMSUNG در پردازنده‌های اگزینوس، NVIDIA در پردازشگرهای تگرا و Qualcomm در پردازنده‌های اسنپ‌دراگون خود از معماری قدرتمند آرم استفاده میکنند.

مقایسه پردازنده های ARM و Teradici

با پیشرفتی که در عرصه ی مجازی سازی در دهه ی اخیر شاهد آن بودیم

و همینطور پیشرفت دستگاههای موبایل، معماری آرم که به جرات میتوان گفت از نظر تعداد فروش، رتبه ی اول در بین تولید کننده های پردازنده ها را به خود اختصاص داده است،

(بیش از ۹۷ درصد از تلفن های هوشمند، بیش از ۹۰ درصد از هارد دیسک ها، بیش از ۶۰ درصد از تلوزیون ها و ستاپ باکس ها و …)

بر روی این موارد مصرف (مجازی سازی و سرور) متمرکز شده است

به طوریکه تا قبل از سال ۲۰۱۴ از نظر کیفیت صوت و تصویر ارسالی کمپانی ترادیسی پیشرو عرصه مجازی سازی دسکتاپ بود

اما پس از آن کمپانی آرم با قرار دادن قاابلیت نئون بر روی پردازنده های خود در کنار پردازش ۳۲ بیتی و استفاده از پردازنده های قدرتمند گراافیکی مالی ( Mali) بصورت مجتمع در پردازنده های خود موفق شد

گوی سبقت را در پردازش و فشرده سازی تصویر، از کمپانی ترادیسی برباید

و عملکرد بسیار خوبی حتی در تصاویر سه بعدی و همچنین صدای با کیفیت از خود نشان دهد،

البته ناگفته نماند که انتظاری غیر از هم این نبود، یعنی با توجه به سایز و قدرت کمپانی آرم چنانچه بازار هدف مناسبی پیدا کند

سعی در تصاحب آن بازار خواهد کرد

که با پیشینه ای که از این کمپانی وجود دارد، سعی آن منجر به نتیجه خواهد شد

، البته لازم بذکر است که در مصرف پهنای باند و فشرده سازی صوت و تصویر همچنان کمپانی ترادیسی با اندک فاصله ای پیشرو است،

یعنی در خصوص فشرده سازی تصویر چند درصدی بهتر عمل میکند، اما نه آنقدر ملموس است و نه آنقدر مهم که از کیفیت بالاتر تصویر آرم بگذریم

و همچنین قیمت بسیار پایین تر پردازنده های آرم که معلول بازار بسیار گسترده آنهاست نیز غیر قابل اجتناب است.

به طوریکه کمپانی مطرح HP در مدل پایین تر خود یعنی T310 از پردازنده Teradici

و در مدلهای بالاتر خود یعنی T410 از پردازنده های ARM استفاده کرده است

تا بتواند به لحاظ گرافیکی تجربه ای بهتر در اختیار مشتریان خود قرار دهد.

طبق گفته ی کمپانی VMware پردازنده های خانواده ARM (دارای ویژگی NEON) و Teradici هر دو میتوانند با بالاترین کیفیت در بستر هورایزن (Horizon) استفاده شوند.

منبع : wikipedia


[ بازدید : 0 ] [ امتیاز : 4 ] [ امتیاز شما : ]

مزایای مجازی‌ سازی

چهارشنبه 11 مهر 1397
12:58
محمد

در علم کامپیوتر، مجازی‌سازی[۱] به ساخت نمونهٔ مجازی (غیر واقعی) از چیزهایی مثل پلتفرم سخت‌افزاری، سیستم عامل، وسایل ذخیره‌سازی یا منابع شبکه، گفته می‌شود.

مجازی‌سازی از یک نوع تفکر عمیق و اجرا کردن هر آنچه که در فکر و ذهن می‌گذرد و نهایتاً بدون وجود خارجی پیاده‌سازی می‌گردد. در علم کامپیوتر استفاده از تکنولوژی مجازی‌سازی باعث رشد و پیشرفت بسیار شده است. پیاده‌سازی دستگاه‌های سخت‌افزاری به صورت مجازی اما با همان عملکرد مزایای بسیاری را برای ما به به رهاورد کشیده است.

اصولاً نرم‌فزارها مجازی هستند چون ذات آنها فیزیکی نیست. از اینرو می‌توان گفت مجازی‌سازی در اکثر اوقات شکل نرم‌افزاری دارد؛ که البته بر روی یک سخت‌افزار خاص اجرا خواهد شد. طراحی و شبیه‌سازی انواع سوییچ‌ها، روترها، سرورها و ... از این دسته‌اند. شرکت‌هایی نیز در زمینه تولید سیستم‌های مجازی مشغول به کارند نظیر شرکت مایکروسافت با سیستم Hyper-V یا سیستم‌های مبتنی بر هسته لینوکس از جمله ESX.

مزایای مجازی‌ سازی

بطور کلی مزایای مجازی‌سازی شامل موارد ذیل است:

  1. کاهش هزینه خرید تجهیزات سخت‌افزاری زیاد
  2. متمرکز سازی
  3. کاهش هزینه‌های جاری نظیر برق، نگهداری، تعمیرات
  4. کاهش گرمای تولیدی توسط دستگاه‌ها
  5. عدم نیاز به فضای زیاد به نسبت حالت سنتی
  6. استفاده از بیشترین ظرفیت تجهیزات سخت‌افزاری
  7. جابجایی راحت
  8. پشتیبان‌گیری راحت از اطلاعات
  9. تسریع امور به خاطر وجود بالقوه دستگاه‌ها و عدم نیاز به صرف زمان برای خرید، نصب و آماده‌سازی
  10. امکان تنظیم و نصب سرورها و تجهیزات مجازی با استفاده از الگو و کپی برداری

منبع : مجازی سازی


[ بازدید : 0 ] [ امتیاز : 3 ] [ امتیاز شما : ]

Hyper-V چیست ؟

دوشنبه 22 مرداد 1397
17:00
محمد

Hyper-V چیست ؟

مقدمه ای بر Hyper-V در ویندوز 10

Hyper-V همان Microsoft Virtual PC می باشد.

اگر شما یک توسعه دهنده نرم افزاری ، یک فرد حرفه ای در فناوری اطلاعات و یا از علاقمندان تکنولوژی هستید ، بسیاری از شما نیاز به اجرا کردن چند نوع سیستم عامل دارید. Hyper-V به شما اجازه می دهد چند سیستم عامل را به عنوان ماشین های مجازی در ویندوز اجرا کنید.

Hyper-V به طور خاص مجازی سازی سخت افزاری را فراهم می کند. این بدان معنی است که هر ماشین مجازی بر روی سخت افزار مجازی اجرا می شود. Hyper-V به شما اجازه می دهد دیسک های سخت افزاری مجازی، سوئیچ های مجازی و تعدادی از دستگاه های مجازی دیگر را که می توانید به ماشین های مجازی اضافه کنید ایجاد کنید.

دلایل استفاده از مجازی سازی

مجازی سازی به شما اجازه می دهد:

  • اجرای نرم افزار که نیاز به نسخه های قدیمی تر از سیستم عامل های ویندوز و یا غیر ویندوز دارد.
  • آزمایش با سیستم عامل های دیگر. Hyper-V محیطی بسیار آسان برای ایجاد و حذف سیستم عامل های مختلف ایجاد می کند.
  • تست نرم افزار روی چند سیستم عامل با استفاده از چندین ماشین مجازی. با Hyper-V ، شما میتوانید همه سیستم عامل ها را روی یک دسکتاپ یا کامپیوتر شخصی اجرا کنید. این ماشین های مجازی را می توان بیرون آورد و سپس وارد سیستم Hyper-V دیگر ، از جمله Azure کرد.

سیستم مورد نیاز :

Hyper-V در نسخه های 64 بیتی ویندوز Professiomal ، Enterprise و Education در ویندوز 8 و بعد از آن ، در دسترس است. این نسخه در ویندوز Home دردسترس نیست.

ارتقا از ویندوز 10 نسخه Home به ویندوز 10 نسخه Professional از طریق Opening Settings> Update and Security> Activation و خریداری یک ارتقا صورت می گیرد.

اکثر کامپیوتر ها Hyper-V را اجرا می کنند هرچند هر ماشین مجازی سازی یک سیستم عامل کاملا جداگانه را داراست. شما معمولا می توانید یک یا چند ماشین مجازی را روی یک کامپیوتر با 4 گیگابایت رم اجرا کنید ، هرچند به منابع بیشتری برای ماشین های مجازی اضافی و یا نصب و اجرای نرم افزارهای سنگین مانند بازی، ویرایش ویدئو و یا نرم افزار طراحی مهندسی نیز دارید.

سیستم عامل هایی که میتوانید در یک ماشین مجازی اجرا کنید :

Hyper-V در ویندوز از بسیاری از سیستم عامل های مختلف در یک ماشین مجازی از جمله نسخه های مختلف لینوکس، FreeBSD و ویندوز پشتیبانی می کند.

به عنوان یادآوری ، شما لایسنس معتبر برای هر سیستم عامل که در VM ها استفاده می کنید باید داشته باشید.

تفاوت های Hyper-V در ویندوز و Hyper-V در ویندوز سرور :

برخی از ویژگی های موجود در Hyper-V در ویندوز متفاوت از Hyper-V در حال اجرا بر روی ویندوز سرور هستند.

تنها ویژگی های Hyper-V موجوددر ویندوز سرور :

  • انتقال ماشین های مجازی از یک هاست به دیگر هاست ها.
  • Hyper-V Replica
  • Virtual Fiber Channel
  • SR-IOV networking
  • Shared .VHDX

تنها ویژگی های Hyper-V موجود در ویندوز 10 :

  • Quick Create and the VM Gallery
  • Default network (NAT switch)

مدل مدیریت حافظه برای Hyper-V روی ویندوز متفاوت است. روی سرور، حافظه Hyper-V مدیریت می شود با فرض این که تنها ماشین های مجازی در حال اجرا روی سرور هستند. در Hyper-V روی ویندوز ، مقداری از حافظه بر اساس نیاز های نرم افزاری ماشین های کاربری و مقداری برای اجرا کردن ماشین مجازی توسط هاست مورد استفاده قرار میگیرد.

محدودیت ها :

برنامه هایی که به سخت افزار خاص نیاز دارند، در یک ماشین مجازی خوب کار نخواهد کرد. به عنوان مثال، بازی ها یا برنامه هایی که نیاز به پردازش با GPU دارند ممکن است به خوبی کار نکنند. همچنین برنامه های وابسته به زمان های زیر 10 میلی ثانیه مثل برنامه های پخش زنده موزیک یا برنامه هایی با زمان دقت بالا ، می توانند در اجرا بر روی ماشین مجازی دچار اشکالاتی شوند.علاوه بر این، اگر شما Hyper-V را فعال کنید، برنامه های دارای حساسیت و دقت بالا نیز ممکن است هنگام اجرای روی هاست دچار مشکلاتی شوند.

این به این دلیل است که با مجازی سازی فعال شده ، سیستم عامل هاست نیز در بالای لایه مجازی سازی Hyper-V اجرا می شود، همانطور که سیستم عامل مهمان اجرا می شود. با این حال، بر خلاف مهمان ها، سیستم عامل هاست دارای این ویژگی است که به تمام سخت افزارها دسترسی مستقیم دارد، به این معنی که برنامه های کاربردی با نیازهای سخت افزاری خاص همچنان می توانند بدون مشکل در سیستم عامل هاست اجرا شوند.

گام بعدی :

نحوه ایجاد و پیکربندی ماشین مجازی در Hyper-V ویندوز سرور 2016

منبع : irdatacenter.roomfa.com


[ بازدید : 0 ] [ امتیاز : 3 ] [ امتیاز شما : ]

معرفی SDS های شرکت HPE

دوشنبه 22 مرداد 1397
16:57
محمد

معرفی SDS های شرکت HPE
همانطور که می دانید امروزه از SDDC ها استفاده می شود که باعث کاهش هزینه و افزایش سرعت پیاده سازی می شوند. یکی ار مهمترین تکنولوژیهایی که باید در SDDC ها استفاده شود، SDS می باشد (Software Defined Storage) . به عنوان مثال می توان VSAN را در Vmware به عنوان SDS نام برد. شرکت HPE نیز بدین منظور Store Virtual را معرفی می کند، که در دو مدل مختلف تولید و به بازار عرضه می شود.
در حالت اول Virtual Storage Appliance می باشد که روی مجازی سازی Hypervisor پیاده سازی می شود. برای راه اندازی این مدل باید لایسنس StorVirtual VSA خریداری شود.
در مدل دوم Converged Solution Appliance تولید می شود که یک سخت افزار اختصاصی به منظور راه اندازی SDS می باشد و دستگاههای StoreVirtual در این حوزه قرار می گیرند.به عنوان مثال در این زمینه می توان Converged System 250 را نام برد که پلتفرم این دستگاه Apollo 2000 می باشد.
این SDS ها مبتنی بر سیستم عامل Lefthand می باشند که همان SAN iQ نامیده می شود.
تکنولوژی SDS مناسب برای مجازی سازی دسکتاپ و مجازی سازی می باشد و بسیار مقیاس پذیر هستند و باعث افزایش سرعت پیاده سازی می شوند.

منبع : irdatacenter.roomfa.com


[ بازدید : 0 ] [ امتیاز : 4 ] [ امتیاز شما : ]

Hyper-Converged چیست؟

چهارشنبه 10 مرداد 1397
14:39
محمد

تعریف Hyper-Converged:
با توجه به افزایش سرعت IT امروزه بسیاری از سازمان ها نیاز به راه اندازی مجازی سازی و منابع پردازشی در زمان کمی دارند. منظور از Hyper-Converged استفاده از راه حلی می باشد که بتوان به سرعت منابع پردازشی، ذخیره سازی، شبکه ، مجازی سازی سرور ، مجازی سازی دسکتاپ ، مجازی سازی شبکه را در یک سازمان راه اندازی کرد. در واقع Hyper-converged تمامی موارد فوق را در یک دستگاه جمع آوری نموده است و بصورت Appliance در اختیار ما قرار می دهد و در مدت کمتر از 15 دقیقه می توانیم زیر ساخت های IT را در سازمان راه اندازی کنیم. شرکت HPE امروزه دستگاه 250 و 380 را برای hyper-converged می سازد و به بازار عرضه کرده است.
منبع : irdatacenter


[ بازدید : 0 ] [ امتیاز : 3 ] [ امتیاز شما : ]

پردازنده های EPYC

چهارشنبه 10 مرداد 1397
14:37
محمد

معرفی پردازنده های EPYC که بر روی سرور های HPE DL385 G10 استفاده می شود.

این پردازنده ها نسبت به پردازنده های قدیمی تر 122 برابر پهنای باند بیشتری را برای Memory پوشش می دهند و 60 برابر I/O بیشتری را Support می کنند و تا 45 برابر هسته های بیشتری نسبت به محصولات مشابه رقبای خود دارند. این پردازنده های طراحی شده و بهینه شده برای مجازی سازی و Cloud می باشند. این پردازنده ها می توانند تا 32 هسته داشته باشند، تا 2 ترابایت RAM را در 8 کانال مجزا پوشش می دهند و برای اسلات های PCIe هم 128 لاین دارند. همچنین از مزیت های دیگر آنها این است که دارای یک سیستم امنیتی یکپارچه هستند که باعث محافظت از پردازش ها خواهد شد.
این پردازنده های دارای مدل های زیر می باشند:
7601
7551
7501
7451
7401
7351
7301
7281
7251
که پایین ترین مدل آن یعنی 7251 دارای 8 هسته می باشد و مدل 7601 دارای 32 هسته می باشد .تمامی این پردازنده ها 2 ترابایت Memory را پوشش می دهند و توان مصرفی آنها نیز بسته به مدل بین 120 تا 180 وات می باشد. همچنین Cache آنها نیز بین 32 تا 64 مگا بایت می باشد. از مهمترین مزیت های این پردازنده این این است که فاقد Chipset هستند و در واقع تمامی موارد درون Chipset بصورت یکپارچه درآمده است که همان معنی SOC را می دهد. روی سرور DL385 G10 می توان 2 پردازنده قرار داد. این پردازنده ها همانطور که در بالا ذکر شد بسیار مناسب برای مجازی سازی سرور می باشد و باعث می شود50 درصد کاهش هزینه به ازای هر ماشین مجازی داشته باشیم.

منبع : irdatacenter


[ بازدید : 0 ] [ امتیاز : 3 ] [ امتیاز شما : ]

آشنایی با پروتکل STP

شنبه 30 تير 1397
10:24
محمد

Spanning Tree Protocol

سوئیچ های سیسکو با استفاده از پروتکل STP، از به وجود آمدن loop در شبکه جلوگیری می کنند. در یک LAN که دارای مسیر های redundant می باشد، اگر پروتکل STP فعال نباشد، باعث به وجود آمدن یک loop نامحدود در شبکه می شود. اگر در همان LAN پروتکل STP را فعال کنید، سوئیچ ها برخی از پورت ها را بلاک می کنند و اجازه نمی دهند اطلاعات از آن پورت ها عبور کنند.


پروتکل STP با توجه به دو معیار پورت ها را برای بلاک کردن انتخاب می کند:
• تمامی deviceهای موجود در LAN بتوانند با هم ارتباط برقرار کنند. درواقع STP تعداد پورت های کمی را بلاک می کند تا LAN به چند بخش که نمی توانند با هم ارتباط برقرار کنند، تقسیم نشود.
• Frame ها بعد از مدتی drop می شوند و به طور نامحدود در loop قرار نمی گیرند.
پروتکل STP تعادلی را در شبکه به وجود می آورد بطوریکه frame ها به هر کدام از device ها که لازم باشد می رسند بدون اینکه مشکلات loop به وجود آید.
پروتکل STP با چک کردن هر interface قبل از اینکه از طریق آن اطلاعات ارسال کند، از به وجود آمدن loop جلوگیری می کند. در این روند چک کردن اگر آن پورت داخل VLAN خود در وضعیت STP forwarding باشد، از آن پورت در حالت عادی استفاده می کند، اما اگر در وضعیت STP blocking باشد، ترافیک تمام کاربران را بلاک می کند و هیچ ترافیکی در آن VLAN را از آن پورت عبور نمی دهد.
توجه کنید که وضعیت STP یک پورت، اطلاعات دیگر مربوط به پورت را تغییر نمی دهد. برای مثال با تغییر وضعیت خود تغییری در وضعیت trunk/access و connected/notconnect ایجاد نمی کند. وضعیت STP یک مقدار جدا از وضعیت های قبلی دارد و اگر در حالت بلاک باشد پورت را از پایه غیر فعال می کند.

نیاز به پروتکل STP
پروتکل STP از وقوع سه مشکل رایج در LANهای Ethernet جلوگیری می کند. در نبود پروتکل STP ، بعضی از frame های Ethernet برای مدت زیادی (ساعت ها، روز ها و حتی برای همیشه اگر deviceهای LAN و لینک ها از کار نیوفتند) در یک loop داخل شبکه قرار می گیرند. سوئیچ های سیسکو به طور پیش فرض پروتکل STP را اجرا می کنند. توصیه می کنیم پروتکل STP را تا زمانی که تسلط کامل به آن ندارید، غیر فعال نکنید.

اگر یک frame درloop قرار بگیرد Broadcast storm به وجود می آید. Broadcast storm زمانی به وجود می آید که هر نوعی از frameهای Ethernet (مانند multicast frame،broadcast frame و unicast frameهایی که مقصدشان مشخص نیست) در loop بی نهایت داخل LAN قرار بگیرند. Broadcast stormها می توانند لینک های شبکه را با کپی های به وجود آمده از یک frame اشباع کنند و باعث از بین رفتن frameهای مفید شوند، و نیز با توجه به بار پردازشی مورد نیاز برای پردازش broadcast frameها، تاثیر قابل ملاحظه ای روی عملکرد deviceهای کاربران دارند.
تصویر 1-2 یک مثال ساده از Broadcast storm را نشان می دهد که در آن سیستمی که Bob نام دارد یک broadcast frame ارسال می کند. خط چین ها نحوه ارسال frameها توسط سوئیچ ها را در نبود STP نمایش می دهند.

در تصویر 1-2، frameها در جهت های مختلفی می چرخند، برای ساده تر شدن مثال فقط در یک جهت آنها را نمایش داده ایم.

در مفاهیم سوئیچ، سوئیچ ها در ارسال کردن broadcast farmeها، frameها را به تمام پورت ها به جز پورت فرستنده آن frame، ارسال می کنند. در تصویر 1-2، سوئیچ SW3، frame را به سوئیچ SW2 ارسال می کند، سوئیچ SW2 آن را برای سوئیچ SW1 ارسال می کند، سوئیچ SW1 نیز آن را برای SW3 ارسال می کند و به همین ترتیب این frame به سوئیچ SW2 ارسال می شود و داخل یک loop می چرخد.
زمانی که یک Broadcast storm اتفاق می افتد، frame ها مانند مثال بالا به چرخیدن ادامه می دهند تا زمانی که تغییراتی به وجود آید (شخصی یکی از پورت ها را خاموش کند، سوئیچ را reload کند یا کاری کند که loop از بین برود).
Broadcast storm همچنین باعث به وجود آمدن مشکل نا محسوسی به نام MAC table instability یا ناپیوستگی جدول مک می شود. MAC table instability بدین معنا است که جدول مک آدرس پیوسته در حال تغییر کردن می باشد، و علت آن این است کهframe هایی با مک آدرس یکسان از پورت های مختلفی وارد سوئیچ ها می شوند. به مثال زیر توجه کنید:
در تصویر 1-2 در ابتدا سوئیچ SW3 مک آدرس باب را که از طریق پورت Fa0/13 وارد سوئیچ شده، به جدول مک آدرس خود اضافه می کند:
0200.3333.3333 Fa0/13 VLAN 1
حالا فرایند switch learning را در نظر بگیرید در زمانی که frame در حال چرخش از سوئیچSW3 به سوئیچ SW2 ، سپس به سوئیچ SW1 و بعد از آن از طریق پورت G0/1 وارد سوئیچ SW3 می شود. سوئیچ SW3 می بیند که مک آدرس مبداء 0200.3333.3333 می باشد و از پورت G0/1 وارد سوئیچ شده است، جدول مک آدرس خود را به روز می کند:
0200.3333.3333 G0/1 VLAN 1
در این مورد سوئیچ SW3 هم دیگر نمی تواند به درستی frameها را به مک آدرس باب برساند. اگر در این حالت یک frame (خارج از frameهایی که در داخل loop افتاده اند) به سوئیچ SW3 برسد که مقصد آن باب باشد، سوئیچ SW3 اشتباها frame را روی پورت G0/1 به سوئیچ SW1 ارسال می کند، که این موضوع ترافیک زیادی را به وجود می آورد.
سومین مشکلی که Frame های در حال چرخش در یک broadcast storm ایجاد می کنند این است که کپی های مختلفی از یک frame به دست گیرنده می رسد. در تصویر 1-2 فرض کنید که باب یک frame را برای لاری ارسال کند در حالی که هیچ کدام از سوئیچ ها مک آدرس لاری را نمی دانند. سوئیچ ها frameها را به صورت unicast هایی که مک آدرس مقصدشان مشخص نیست، ارسال می کنند. زمانی که باب یک frame که مک آدرس مقصدش لاری است را ارسال می کند، سوئیچSW3 یک کپی از آن را به سوئیچ های SW1 و SW2 ارسال می کند. سوئیچ های SW1 و SW2 نیز frame را broadcast می کنند، این کپی ها باعث می شود که آن frame در داخل یک loop قرار گیرد. سوئیچ SW1 همچنین یک کپی از frame را به پورت Fa0/11 برای لاری ارسال می کند. در نتیجه لاری کپی های مختلفی از آن frame را دریافت می کند، که می تواند باعث از کار افتادن برنامه ای در سیستم لاری و یا مشکلات شبکه ای شود.

جدول زیر خلاصه ای از سه مشکل اساسی در شبکه ای که دارای redundancy است و STP در آن اجرا نمی شود را نشان می دهد:

پروتکل (STP (IEEE 802.1D دقیقا چه کار می کند؟
پروتکلSTP با قرار دادن هر یک از پورت های سوئیچ در وضعیت های forwarding و blocking از به وجود آمدن loop جلوگیری می کند. پورت هایی که در وضعیت forwarding هستند به صورت عادی فعالیت می کنند، frameها را ارسال و دریافت می کنند. اما پورت هایی که در وضعیت blocking قرار دارند به جز پیام های مربوط به پروتکل STP (و برخی دیگر از پیام هایی که برای پروتکل ها استفاده می شوند) ، هیچ frame دیگری را پردازش نمی کنند. این پورت ها frameهای کاربران را ارسال نمی کنند، مک آدرس frameهای ورودی را ذخیره نمی کنند و frameهای دریافتی از کاربران را نیز پردازش نمی کنند.
تصویر 2-2 راه حل استفاده از پروتکل STP (قرار دادن یکی از پورت های سوئیچ SW3 در وضعیت blocking) در مثال پیشین را نمایش می دهد:

همانطور که در مراحل زیر نشان داده شده، زمانی که باب یک broadcast را ارسال می کند، دیگر loop به وجود نمی آید:
• مرحله اول: باب frame را به سوئیچ SW3 ارسال می کند.
• مرحله دوم: سوئیچ SW3 این frame را فقط به سوئیچ SW1 ارسال می کند، دیگر به سوئیچ SW2 ارسال نمی شود چون پورت G0/2 در وضعیت blocking قرار دارد.
• مرحله سوم: سوئیچ SW1 این frame را روی پورت های Fa0/12 و G0/1 ارسال می کند.
• مرحله چهارم: سوئیچ SW2 این frame را روی پورت های Fa0/12 و G0/1 ارسال می کند.
• مرحله پنجم: سوئیچ SW3 به صورت فیزیکی یک frame را دریافت می کند، اما frame دریافتی از SW2 را به دلیل اینکه پورت G0/2 در سوئیچ SW3 در وضعیت blocking قرار دارد، نادیده می گیرد.
با استفاده از توپولوژی STP در تصویر 2-2، سوئیچ ها از لینک موجود بین SW2 و SW3 برای انتقال ترافیک استفاده نمی کنند. با این حال، اگر لینک بین SW3 و SW1 دچار مشکل شود، پروتکل STP پورت G0/2 را از وضعیت blocking به وضعیت forwarding تغییر می دهد و سوئیچ ها می توانند از آن لینکredundant استفاده کنند. در این موقعیت ها پروتکل STP با انجام فرایند هایی متوجه تغییرات در توپولوژی شبکه می شود و تشخیص می دهد که پورت ها نیاز به تغییر در وضعیتشان دارند و وضعیت آن ها را تغییر می دهد.

سوالاتی که احتمالا زهن شما را نیز مشغول کرده: پروتکل STP چگونه پورت ها را برای تغییر وضعیت انتخاب می کند و چرا این کار را می کند؟ چگونه وضعیت blocking را برای بهره مندی از مزایای لینک های redundant، به وضعیت forwarding تغییر می دهد؟ در ادامه به این سوالات پاسخ خواهیم داد.
پروتکل STP چگونه کار می کند؟
الگوریتم STP یک درخت پوشا (spanning tree) از پورت هایی که frameها را ارسال می کنند تشکیل می دهد. این ساختار درختی، مسیرهایی را برای رسیدن لینک های ethernet به هم مشخص می کند. (مانند پیمودن یک درخت واقعی که از ریشه درخت شروع می شود و تا برگ ها ادامه دارد)
توجه: STP قبل از اینکه در سوئیچ های LAN استفاده شود، در Ethernet bridgeها به کار رفته بود.
STP از فرایندی که بعضا spanning-tree algorithm)STA) نامیده می شود، استفاده می کند که در آن پورت هایی که باید در وضعیت forwarding قرار بگیرند را انتخاب می کند. STP پورت هایی که برای forwarding انتخاب نشدند را در وضعیت blocking قرار می دهد. در واقع پروتکل STP پورت هایی که در ارسال کردن اطلاعات باید فعال باشند را انتخاب می کند و پورت های باقی مانده را در وضعیت blocking قرار می دهد.
پروتکل STP برای قرار دادن پورت ها در حالت forwarding از سه مرحله استفاده می کند:
• پروتکل STP یک سوئیچ را به عنوان root انتخاب می کند و تمام پورت های فعال در آن سوئیچ را در وضعیت forwarding قرار می دهد.
• در هر کدام از سوئیچ های nonroot (همه ی سوئیچ ها به جز root)، پورتی که کمترین هزینه را برای رسیدن به سوئیچ root دارد (root cost)، به عنوان root port(RP) انتخاب می کند و آن ها را در وضعیت forwarding قرار می دهد.
• تعداد زیادی سوئیچ می توانند به یک بخش از Ethernet متصل شوند، اما در شبکه های مدرن، معمولا دو سوئیچ به هر لینک (بخش) متصل می شوند. در بین سوئیچ هایی که به یک لینک مشترک متصل هستند، پورت سوئیچی که root cost کمتری دارد در وضعیت forwarding قرار می گیرد. این سوئیچ ها را designated switch می نامند و پورت هایی که در وضعیت forwarding قرار گرفته را designated port)DP) می نامند.
باقی پورت ها در وضعیت blocking قرار می گیرند.

خلاصه ای از علت قرار گرفتن پورت ها در وضعیت های blocking و forwarding توسط پورتکل STP

Bridge و Hello BPDU
فرایند STA با انتخاب یک سوئیچ به عنوان root شروع می شود. برای اینکه روند انتخاب را بهتر متوجه شوید، شما باید با مفهوم پیام هایی که بین سوئیچ ها تبادل می شود به خوبی آشنا شوید و با فرمت شناساگری که برای شناسایی هر سوئیچ استفاده می شود آشنا باشید.
(STP bridge ID (BID یک مقدار 8 بایتی برای شناسایی هر سوئیچ می باشد. Bridge ID به دو بخش 2 بایتی که مشخص کننده اولویت و حق تقدم است و 6 بایتی که system ID نامیده می شود و همان مک آدرس هر سوئیچ است، تقسیم می شود. استفاده از مک آدرس این اطمینان را می دهد که bridge ID هر سوئیچ یکتا خواهد بود.
پیام هایی که برای تبادل اطلاعات مربوط به پروتکل STP بین سوئیچ ها استفاده می شود، bridge protocol data units )BPDU) نام دارد. رایج ترین BPDU ، که hello BPDU نام دارد، تعدادی از اطلاعات که شامل BID سوئیچ ها نیز می شود را لیست می کند و ارسال می کند. با استفاده از BID درج شده روی هر پیام، سوئیچ ها می توانند تشخیص دهند که هر پیام Hello BPDU از طرف کدام سوئیچ است.
جدول زیر اطلاعات کلیدی مربوط به Hello BPDU را نشان می دهد:

انتخاب سوئیچ root
سوئیچ ها با استفاده از BIDهای موجود در پیام های BPDU، سوئیچ root را انتخاب می کنند. سوئیچی که عدد BID آن مقدار کمتری را داشته باشد به عنوان سوئیچ root انتخاب می شود. با توجه به اینکه بخش اول عدد BID مقدار اولویت می باشد، سوئیچی که مقدار اولویت پایین تری داشته باشد به عنوان سوئیچ root انتخاب می شود. برای مثال اگر سوئیچ های اول و دوم به ترتیب دارای اولویت های 4096 و 8192 باشند، بدون در نظر گرفتن مک آدرس سوئیچ ها که در به وجود آمدن BID هر سوئیچ موثر است، سوئیچ اول به عنوان سوئیچ root انتخاب خواهد شد.
اگر مقدار اولویت دو سوئیچ برابر شد، سوئیچی که مک آدرس آن مقدار کمتری را داشته باشد به عنوان سوئیچ root انتخاب می شود. در این حالت به علت یکتا بودن مک آدرس، حتما یک سوئیچ انتخاب خواهد شد. پس اگر مقدار اولویت دو سوئیچ برابر باشد و مک آدرس آنها 0200.0000.0000 و 0911.1111.1111 باشد، سوئیچی که دارای مک آدرس 0200.0000.0000 است، به عنوان سوئیچ root انتخاب می شود.
مقدار اولویت مضربی از 4096 است و به صورت پیش فرض برای همه ی سوئیچ ها مقدار 32768 را دارد. از آنجایی که مک آدرس سوئیچ ها معیار مناسبی برای انتخاب سوئیچ root نمی باشد بهتر است به صورت دستی مقدار اولویت را تغییر دهیم تا سوئیچی که می خواهیم به عنوان سوئیچ root انتخاب شود.
در فرایند انتخاب سوئیچ root، سوئیچ ها از طریق فرستادن پیام های Hello BPDU که BID خود را در این پیام ها به عنوان root BID قرار داده اند، سعی می کنند خود را به عنوان سوئیچ root به سوئیچ های مجاور خود معرفی کنند. اگر یک سوئیچ پیامی را دریافت کند که BID کمتری نسبت به BID خودش داشته باشد، آن سوئیچ دیگر خود را به عنوان سوئیچ root معرفی نمی کند، به جای آن شروع به ارسال پیام دریافتی که دارای BID بهتری است می کند (مانند رقابت های انتخاباتی که یک نامزد به نفع نامزد هم حزبش که موقعیت بهتری دارد، از رقابت در انتخابات خارج می شود). در نهایت تمامی سوئیچ ها به یک نظر نهایی می رسند که کدام سوئیچ BID کمتری دارد و همه آن سوئیچ را به عنوان سوئیچ root انتخاب می کنند.
توجه : در مقایسه دو پیام Hello با هم، پیامی که BID کمتری دارد، superior Hello و پیامی که BID بیشتری دارد، inferior Hello نام دارد.

تصویر 3-2 آغاز فرایند انتخاب سوئیچ root را نشان می دهد، در ابتدای این فرایند SW1 همانند باقی سوئیچ ها خود را به عنوان سوئیچ root معرفی می کند. SW2 پس از دریافت Hello مربوط به SW1 متوجه می شود که SW1 شرایط بهتری را برای root بودن دارد، پس شروع به ارسال Hello دریافتی از SW1 می کند. در این حالت سوئیچ SW1 خود را به عنوان root معرفی می کند و SW2 نیز با آن موافقت می کند اما سوئیچ SW3 هنوز سعی می کند که خود را به عنوان سوئیچ root معرفی کند و Hello BPDUهای خود را ارسال می کند.

دو نامزد هنوز باقی ماندند:SW1 و SW3. از آنجایی که SW1 مقدار BID کمتری دارد، SW3 پس از دریافت BPDU مربوط به SW1، SW1 را به عنوان سوئیچ root می پذیرد و به جای BPDU خود، BPDU دریافتی از SW1 را به سوئیچ های مجاور ارسال می کند.

پس از اینکه فرایند انتخاب تکمیل شد، فقط سوئیچ root به تولید پیام های Hello BPDU ادامه می دهد. سوئیچ های دیگر این پیام ها را دریافت می کنند و BID فرستنده و root costرا تغییر می دهند و به باقی پورت ها ارسال می کنند. در تصویر 4-2، در قدم اول سوئیچ SW1 پیام های Hello را ارسال می کند، در قدم دوم سوئیچ های SW2 و SW3 به صورت مستقل تغییرات را روی پیام های دریافتی اعمال می کنند و آن ها را روی پورت های خود ارسال می کنند.
برای اینکه بخواهیم مقایسه BID را خلاصه کنیم، BID را به بخش های تشکیل دهنده ان تقسیم می کنیم، سپس به صورت زیر مقایسه می کنیم:
• اولویتی که کمترین مقدار را دارد
• اگر مقدار اولویت آن ها برابر باشد، سوئیچی که مک ادرسش کمترین مقدار را دارد

انتخاب Root Port برای هر سوئیچ
در مرحله ی بعدی، پس از انتخاب سوئیچ root، پروتکل STP برای سوئیچ های nonroot (همه ی سوئیچ ها به جز سوئیچ root) یک root port )RP) انتخاب می کند. RP هر سوئیچ، پورتی است که کمترین هزینه را برای رسیدن به سوئیچ root دارد.
احتمالا عبارت هزینه برای همه ی ما در انتخاب مسیر بهتر، روشن و مشخص باشد. اگر به دیاگرام شبکه ای که در آن سوئیچ root و هزینه ارسال اطلاعات روی هر پورت مشخص باشد توجه کنید، می توانید هزینه برقراری ارتباط با سوئیچ root را برای هر پورت به دست آورید. توجه کنید که سوئیچ ها برای به دست آوردن هزینه برقراری ارتباط با سوئیچ root، از دیاگرام شبکه استفاده نمی کنند، صرفا استفاده از آن برای درک این موضوع به ما کمک می کند.
تصویر 5-2 همان سوئیچ های مثال پیشین که در آن سوئیچ root و هزینه ی رسیدن به سوئیچ root را برای پورت های سوئیچ SW3 نشان می دهد.

سوئیچ SW3 برای ارسال frameها به سوئیچ root، می تواند از دو مسیر استفاده کند: مسیر مستقیم که از پورت G0/1 خارج می شود و به سوئیچ root می رسد، و مسیر غیر مستقیمی که از پورت G0/2 خارج می شود و از طریق SW2 به سوئیچ root می رسد. برای هر یک از پورت ها، هزینه ی رسیدن به سوئیچ root برابر است با مجموع هزینه ی خروج از پورت هایی که frame ارسالی، برای رسیدن به سوئیچ root از آن ها عبور می کند (در این محاسبه، هزینه ورود آن frame به پورت ها حساب نمی شود). همانطور که مشاهده می کنید، مجموع هزینه ی مسیر مستقیم که از پورت G0/1 سوئیچ SW3 خارج می شود برابر 5 است، و مسیر دیگر دارای مجموع هزینه ی 8 می باشد. از آنجایی که پورت G0/1، بخشی از مسیری است که هزینه ی کمتری برای رسیدن به سوئیچ root دارد، سوئیچ SW3 این پورت را به عنوان root port انتخاب می کند.
سوئیچ ها با سپری کردن فرایندی متفاوت به همین نتیجه می رسند. آنها هزینه خروج از پورت خود را به root cost موجود در Hello BPDU ورودی از همان پورت اضافه می کنند و هزینه رسیدن به سوئیچ root از طریق آن پورت را به دست می آورند. هزینه خروج از هر پورت در پروتکل STP یک عدد صحیح (integer) می باشد که به هر پورت در هر VLAN اختصاص می یابد، تا پروتکل STP با استفاده از این مقیاس اندازه گیری بتواند تصمیم بگیرد که کدام پورت را به توپولوژی خود اضافه کند. در این فرایند سوئیچ ها، root cost سوئیچ های مجاور را که از طریق Hello BPDUهای دریافتی به دست می آورند، بررسی می کنند.

تصویر 6-2 یک مثالی از چگونگی محاسبه بهترین root cost و سپس انتخاب آن به عنوان root port را نشان می دهد. اگر به تصویر توجه کنید، خواهید دید که سوئیچ root پیام هایی(Hello) که root cost آن ها برابر صفر می باشد را ارسال می کند. هزینه رسیدن به سوئیچ root از طریق پورت های سوئیچ root برابر با صفر است.
در ادامه به سمت چپ تصویر توجه کنید که سوئیچ SW3، root cost دریافتی از طریق SW1 را (که برابر صفر است) با هزینه ی خروج از پورت G0/1 که آن Hello را دریافت کرده (5) جمع می کند و هزینه ارسال اطلاعات از طریق این پورت را به دست می آورد.
در سمت راست تصویر، سوئیچ SW2 متوجه شده که root cost آن برابر با 4 است. پس زمانی که SW2 یک Hello برای SW3 ارسال می کند، مقدار root cost آن را 4 قرار می دهد. در سمت دیگرهزینه ارسال اطلاعات از طریق پورت G0/2 در سوئیچ SW3 برابر 4 است، از اینرو سوئیچ SW3 این دو مقدار را با هم جمع می کند و به این نتیجه می رسد که هزینه ی رسیدن به سوئیچ root از طریق پورت G0/2 برابر 8 است.
با توجه به نتایج به دست آمده از آنجایی که پورت G0/1 نسبت به پورت G0/2 هزینه ی کمتری برای رسیدن به سوئیچ root دارد، پس سوئیچ SW3 پورت G0/1 را به عنوان RP انتخاب می کند. سوئیچ SW2 نیزبا گذراندن همین فرایند پورت G0/2 را به عنوان RP انتخاب می کند. سپس تمام سوئیچ ها، root port های خود را در وضعیت forwarding قرار می دهند.

انتخاب Designated Port در هر LAN segment (پورت کاندید)
پس از انتخاب سوئیچ root، در سوئیچ های nonroot، تمام root portها را مشخص کردیم و آنها را در وضعیت forwarding قرار دادیم. مرحله نهایی پروتکل STP برای تکمیل توپولوژی STP، انتخاب designated port در هر LAN segment است. در هر بخش(segment) از LAN، پورت سوئیچی که کمترین root cost را دارد و به آن بخش از LAN متصل است Designated port )DP) نامیده می شود. زمانی که یک سوئیچ nonroot می خواهد که یک Hello را ارسال کند، هزینه رسیدن به سوئیچ root را در root cost آن پیام قرار می دهد و ارسال می کند. دراینصورت پورت سوئیچی که کمترین هزینه را برای رسیدن به root دارد، در میان تمام سوئیچ هایی که به آن بخش متصل هستند، به عنوان DP در آن بخش شناخته می شود. در این مرحله اگر هزینه سوئیچ ها برای رسیدن به سوئیچ root برابر بود، پورت سوئیچی که BID کمتری دارد را به عنوان DP انتخاب می کنیم.
در تصویر 4-2 پورت G0/1 در سوئیچ SW2 که به سوئیچ SW3 متصل است، به عنوان DP انتخاب می شود.
پس از انتخاب DPها، تمام آن ها را در وضعیت forwarding قرار می دهیم.
مثالی که در تصاویر 3-2 تا 6-2 به نمایش گذاشته شد، تنها پورتی که نیازی ندارد تا در وضعیت forwarding قرار بگیرد، پورت G0/2 در سوئیچ SW3 است. درنهایت فرایند پروتکل STP کامل شد و جدول زیر وضعیت نهایی هر پورت و علت قرار گرفتن در آن وضعیت را نشان می دهد:

به صورت خلاصه اگر بخواهیم توضیح دهیم، در فرایند اجرای پروتکل STP:
• در قدم اول سوئیچ root انتخاب می شود که ابتدا تمام سوئیچ ها سعی می کنند خود را به عنوان root معرفی کنند، سپس سوئیچی که رقم BID آن مقدار کمتری را داشته باشد به عنوان سوئیچ root انتخاب خواهد شد.
• در قدم دوم برای هر سوئیچ، پورتی که کمترین هزینه برای رسیدن به سوئیچ root دارد را به عنوان root port انتخاب می شود. سپس همه ی root portها را در وضعیت forwarding قرار می گیرند.
• در قدم سوم پورت های کاندید انتخاب می شوند و در وضعیت forwarding قرار می گیرند. در نهایت پورت هایی که وضعیتشان مشخص نشده در وضعیت blocking قرار می گیرند.

منبع : irdatacenter


[ بازدید : 0 ] [ امتیاز : 3 ] [ امتیاز شما : ]

معرفی Veeam Backup & Replication

شنبه 30 تير 1397
10:24
محمد

Veeam Backup & Replication یک برنامه پشتیبانی و محافظت از داده هاست که برای محیط های مجازی VMware vSphere و Microsoft Hyper-V hypervisors توسط شرکت Veeam ساخته شده است.این نرم افزار قابلیت پشتیبان گیری ، replication و Restore کردن ، برای ماشین های مجازی ارائه نموده است.
عملکرد:
Veeam Backup & Replication برای محیط های مجازی سازی شده طراحی گردیده است. به وسیله snapshots گرفتن از ماشین ها و استفاده از این snapshots برای گرفتن بکاپ که به دو صورت Full و Incremental است. برای بازگردانی داده ها می توان نسخه پشتیبان گرفته شده را در محل ذخیره شده قبلی یا در مکانی دیگر بازیابی نمود .

گرفتن Snapshots به وسیله VMware vSphere میتواند بار سنگینی بر عملکرد ماشین های مجازی بگذارد و مدیران IT را به چالش بکشد.Veeam به طرز چشمگیری این روند را بهبود بخشیده است.با استفاده از Snapshots گرفتن در سطح استوریج حتی در ساعات کاری با کمترین تاثییر بر عملکرد می توانید از داده های خود بکاپ تهیه نمایید.Veeam می تواند با ادغام با replication در سطح استوریج در صورتی که استوریج اصلی در دسترس نباشد و دچار مشکل شده باشد به سرعت داده شما را بازیابی نماید.

Storage partners for every business
در زیر لیست شرکت های تولید کننده استوریج که از Veeam Backup & Replication پشتیبانی نموده، آورده شده است. به وسیله این استوریج ها می توان سریع تر نسخه پشتیبانی از ماشین ها را تهیه نمود و سرعت باز گردانی اطلاعات را افزایش داد.

Recovery
نرم افزار veeam backup برای بازگردانی اطلاعات انتخاب های مختلفی را به کاربران ارائه می دهد.
Instant VM Recovery
به وسیله Instant VM Recovery کاربران veeam backup می توانند ماشین هایی که از آن بکاپ تهیه نموده اند را به سرعت در محل ذخیره بکاپ بالا بیاورند.

Full VM Recovery
به وسیله Full VM Recovery میتوانید آخرین وضعیت ماشین ها را در بازه های مشخص زمانی در هاست اصلی یا هاست دیگر، بازیابی نمایید. VM رامی توان در مکان اصلی که از آن بکاپ گرفته شده است ، در صورتی که آن ماشین خاموش باشد یا پاک شده باشد بازیابی نمود. و یا بازیابی در هاست جدید صورت گیرد که در این صورت تنظیمات ماشین باید قابل دسترسی باشد. (تنظیمات شبکه ، دیتا سنتر)
VM File Recovery
به وسیله Instant File-Level Recovery (IFLR) شما می توانید هر فایل مورد نظرتان را در بازه زمانی مشخص بازیابی نمایید. همچنین veeam از فایل سیستم های ویندوزی و لینوکسی پشتیبانی می نماید.

وحتی می توانید فایل های ماشین را مانند VMDK را بازگردانی نمایید.
Application-item recovery:
با استفاده از veeam backup می توانید به صورت مستقیم برای بازیابی Application های زیر استفاده نمایید.
Microsoft Active Directory

Microsoft Exchange
Microsoft SharePoint

Microsoft SQL Server


Oracle
با توجه به مختصر توضیحات بالا و با استناد به گزارش سال 2017 از Gartner ، veeam backup and replication توانسته جز 5 شرکت پیشرو در صنعت بکاپ و ریکاوری باشد.

در زیر نقاط قوت و ضعف آن را مشاهده می کنید که توسط Gartner اعلام شده است:
نقاط قوت:
Veeam قابلیت های بسیاری با گزینه های بازیابی ساده برای محیط VMware و Hyper-V ارائه نموده است.
برای چندمین سال پیاپی یکی از سریع ترین شرکت های در حال رشد در صنعت پشتیباتی بوده است.
نقاط ضعف:
بسیاری از مشتریان به این نکته اشاره کرده اند که سیاست قیمت گذاری لایسنس اغلب دیگر رقابتی نیست در حالی که مدیریت و ریکاوری در Veeam ساده می باشد. اندازه مناسب برای ذخیره سازی بکاپ و پیکربندی در مرحله نصب ممکن است توجه بیشتری نیاز داشته باشد زیرا نرخ تغییرات در ماشین های مجازی بسیار بالا می باشد.
Veeam فقط به طور رسمی اعلام نموده است که از سرور فیزیکی پشتیبانی می کند ولی هنوز به طور کامل این ویژگی را ادغام و اثبات ننموده است .
نتیجه گیری:
امروزه تداوم کسب و کار معنای جدیدی به خود گرفته است . زمانی که داده ها به عنوان منبع حیاتی کسب و کار شما است حفظ اطلاعات شما و اطمینان از صحت و در دسترس بودن آن یک اولویت است. به دلیل کاهش سرور های فیزیکی و افزایش ماشین های مجازی مدیران فناوری اطلاعات با یک سری جدید از مسائل محافظت از داده ها و چالش های پشتیبانی مواجه شده اند.این چیزی بیش از یک کپی از فایل های مهم است. وضعیت هر VM نیز باید محافظت شود و به راحتی قابل دسترس باشد. هر سازمان باید نیاز های بکاپ گیریش را در چهارچوب زیر ساخت مجازی مجددا ارزیابی نماید و سپس مناسب ترین فن اوری ها را برای ارائه بهتر محافظت از داده ها انتخاب کند. Veeam با توجه به ویژگی هایی که برای محیط مجازی ارائه نموده است می تواند یکی از بهترین انتخاب ها برای محیط مجازی باشد.

منبع : irdatacenter


[ بازدید : 0 ] [ امتیاز : 3 ] [ امتیاز شما : ]

آشنایی با IPv6

سه شنبه 12 تير 1397
14:32
محمد

آشنایی با IPv6

آدرس IP شناسه ای یکتا برای مشخص شدن یک device در یک شبکه می­ باشد. یکتا بودن آدرس IP بدین معناست که آدرس IP یک device داخل شبکه­ ای که در آن قرار دارد فقط به آن سیستم اختصاص دارد . تا زمانی که یک device آدرس IP نداشته باشد نمی ­تواند با device های دیگر ارتباط برقرار کند .

آدرس­ های IP به دو دسته تقسیم می­ شوند . دسته­ ی اول IPv4 می­ باشد که اکثر ما با آن برخورد داشته ایم و تا حدودی با آن آشنا هستیم. آدرس­ IP ورژن 4 یک آدرس 32 بیتی است که به صورت 4 عدد در مبنای ده که با نقطه از هم جدا شده اند، نمایش داده می­ شود (مانند : 192.168.1.1 ). این ورژن از IP به تعداد 2 به توان 32 آدرس را ارائه می­ کند. در حال حاضر بیش از 90 درصد آدرس­ ها در جهان ، IPv4 می­ باشد.

از آنجایی که استفاده از پروتکل TCP/IP در سال­ های اخیر بیش از حد انتظار بوده، در آدرس دهی IPv4 ، محدود هستیم و آدرس­ های IPv4 رو به اتمام است. این یکی از دلایلی است که TCP/IP یک ورژن جدید از آدرس­ های IP را طراحی کرد که با نام IPv6 شناخته می­ شود.

بعضی از مزیت­ هایی که IPv6 دارد :

  • هزینه­ ی کمتر پردازشی : packet های IPv6 باز طراحی شده­ اند تا header های ساده ­تری را تولید و استفاده کنند که این موضوع فرایند پردازش packet ها توسط سیستم­ های فرستنده و گیرنده را بهبود می­ دهد.
  • آدرس­ های IP بیشتر : IPv6 از ساختار آدرس دهی 128 بیتی استفاده می ­کند در حالی که IPv4 از ساختار آدرس دهی 32 بیتی استفاده می کند . این تعداد آدرس IP این اطمینان را می­ دهد که حتی بیشتر از آدرس­ های مورد نیاز در سال های آینده ، آدرس موجود است.
  • Multicasting : در IPv6 از Multicasting به عنوان روش اصلی برقرار کردن ارتباط استفاده می شود. IPv6 بر خلاف IPv4 روش broadcast را ارائه نمی­ دهد. روش broadcast از پهنای باند شبکه به صورت غیر بهینه و نامناسب استفاده می­ کند.
  • IPSec: پروتکل Internet Protocol Security)IPSec) در درون IPv4 وجود نداشت اما IPv4 از آن پشتیبانی می­ کرد در حالی که IPv6 این پروتکل را به صورت built in در درون خود دارد و می ­تواند تمامی ارتباطات را رمز گذاری (encrypt) کند.

آدرس دهی در IPv6

در IPv6 تغییرات عمده ­ای نسبت به IPv4 وجود دارد. IPv4 از ساختار آدرس دهی 32 بیتی استفاده می­ کند در حالی که IPv6 از ساختار آدرس دهی 128 بیتی استفاده می کند. این تغییر می تواند 2 به توان 128 آدرس یکتا را ارائه دهد . این میزان آدرس IP، پیشرفت بسیار زیادی را نسبت به تعداد آدرس IP که IPv4 ارائه می کند(2 به توان 32) دارد.

آدرس IPv6 دیگر از 4 بخش 8 بیتی استفاده نمی کند. آدرس IPv6 به 8 قسمت 16 بیتی که هر قسمت ارقامی در مبنای 16 هستند و با (:) از هم جدا می شوند تقسیم می­شود. مانند:

65b3:b834:45a3:0000:0000:762e:0270:5224

در مورد آدرس ­های IPv6 یک سری نکته­ هایی وجود دارد که باید آنها را بدانید:

  • این آدرس ها نسبت به بزگی حروف حساس نیستند
  • صفر های سمت چپ هر بخش را میتوان حذف کرد
  • بخش هایی که پشت سر هم صفر هستند را میتوان به صورت (::) خلاصه نویسی کرد (روی هر آدرس فقط یک بار می توان این کار را کرد)

مثال: آدرس loopback در IPv6 به صورت زیر است :

0000:0000:0000:0000:0000:0000:0000:0001

از آنجایی که می توان صفرهای سمت چپ هر بخش را حذف کرد آدرس را بازنویسی می کنیم :

0:0:0:0:0:0:0:1

بعد از حذف کردن صفرهای سمت چپ ، می توانیم صفرهای پشت سر هم را نیز خلاصه نویسی کنیم :

1::

همانطور که اشاره کردیم ، فقط یک بار می توانیم صفرهای پشت سر هم را خلاصه نویسی کنیم ، علت این موضوع این است که اگر چند بار این خلاصه نویسی را روی بخش های مختلف آدرس انجام دهیم ، آدرس اصلی بعد از خلاصه نویسی مشخص نخواهد بود . به مثال زیر توجه کنید:

0000:0000:45a3:0000:0000:0000:0270:5224

در این مثال دو سری صفر های پشت سر هم وجود دارد . اگر هر دو را خلاصه نویسی کنیم به صورت زیر می شود :

45a3::270:5224::

در این حالت مشخص نیست که هر سری چه تعداد صفر پشت سر هم داشته ایم ، پس بهتر است که آن سری که تعداد صفر های بیشتری پشت سر هم دارد را خلاصه نویسی کنید.

0:0:45a3::270:5224

ساختار آدرس دهی در IPv6 به کلی تغییر کرده است ، به طوری که 3 نوع آدرس وجود دارد :

  • Unicast: آدرس Unicast برای ارتباطات یک به یک استفاده می شود.
  • Multicast: آدرس Multicast برای ارسال data به سیستم های مختلف در یک لحظه استفاده می شود. آدرس های Multicast با پیشوند FF01 شروع می شوند. برای مثال FF01::1 برای ارسال اطلاعات به تمام node ها در شبکه استفاده می شود ، در حالی که FF01::2 برای ارسال اطلاعات به تمام روترهای داخل شبکه استفاده می شود.
  • Anycast: آدرس Anycast برای گروهی از سیستم ها که سرویسی را ارائه می کنند استفاده می شود.

توجه کنید که آدرس broadcast در IPv6 وجود ندارد.

آدرس های Unicast خود به سه دسته تقسیم می شود :

  • Global unicast: آدرس های Global unicast ، آدرس های public در IPv6 می­باشد و قابلیت مسیریابی در اینترنت دارد. این آدرس ها معادل آدرس های public در IPv4 می باشد.
  • Site-local unicast: آدرس های Site-local unicast ، آدرس های private هستند و مشابه آدرس های private در IPv4 می باشند و فقط برای ارتباطات داخل شبکه ای استفاده می شوند. این آدرس ها همیشه با پیشوند FEC0 شروع می شوند.
  • Link-local unicast: آدرس های Link-local unicast مشابه APIPA در IPv4 هستند و فقط می توانند برای ارتباط با سیستمی که به آن متصل هستند ، استفاده شوند. این آدرس ها با پیشوند FE80 شروع می شود.

نکته دیگری که باید به آن اشاره کنیم ، IPv6 ازClassless Inter-Domain Routing (CIDR) که در سال های اخیر متداول شده اند( برای تغییر بخش net ID روی IPv4 )،استفاده می کند.برای مثال آدرس 2001:0db8:a385::1/48 بدین معناست که 48 بیت اول آدرس تشکیل دهنده ی net ID است.

IPv6 به 3 بخش تقسیم می شود:

  • Network ID: معمولا 48 بیت اول آدرس تشکیل دهنده ی net ID آن می باشد. در آدرس های global address ، net ID توسط ISP به سازمان شما اختصاص داده می شود.
  • Subnet ID: این بخش از 16 بیت تشکیل شده و با استفاده از آنها می توانید شبکه ی IPv6 خود را به subnet های مختلف تقسیم کنید. برای مثال شبکه ای با net ID 2001:ab34:cd56 /48 می تواند به دو زیرشبکه 2001:ab34:cd56:0001/64 و 2001:ab34:cd56:0002/64 تقسیم شود.
  • (Unique Identifier(EUI-64: نیمه ی دوم آدرس (64 بیت آخر) را unique identifier می نامند، این بخش مشابه host ID در IPv4 است (یک سیستم را در شبکه مشخص می کند). این بخش تشکیل می شود از مک آدرس آن سیستم (48 بیت)که به دو قسمت تقسیم شده و عبارت FFFE که میان آن دو قسمت قرار می گیرد.

Auto configuration

یکی از مزیت های IPv6 قابلیت auto configuration است ، که در آن سیستم یک آدرس IPv6 برای خود انتخاب می کند ، سپس با ارسال پیام neighbor solicitation به آن آدرس بررسی میکند که این آدرس در شبکه برای سیستم دیگری استفاده نشده باشد. اگر این آدرس توسط سیستم دیگری استفاده شده باشد ، به پیام جواب می دهد و سیستمی که قصد انتخاب آدرس را داشت متوجه می شود که از آن آدرس نمی تواند استفاده کند. قابل ذکر است احتمال اینکه یک آدرس به دو سیستم اختصاص داده شود خیلی کم است چون مک آدرس سیستم ها در آدرس دهی auto configuration استفاده می شود (مک آدرس یک آدرس یکتا است).

با توجه به تکنولوژی های پیش روی دنیای اطلاعات به ویژه IOT یا اینترنت اشیاء که به واسطه آن میتوان تعداد زیادی از اشیاء که در طول روز با آن ها سر و کار داریم (مانند سیستم های گرمایشی و سرمایشی، لوازم خانگی، ملزومات اداری و ...)، که به صورت هوشمند کنترل می شوند را با یکدیگر در بستر اینترنت ارتباط خواهند داشت. این امر بدین معناست که به میلیاردها آدرس IP نیاز خواهیم داشت و ملزم به استفاده از IPv6 می باشیم .

منبع : irdatacenter.blogsky.com


[ بازدید : 0 ] [ امتیاز : 3 ] [ امتیاز شما : ]
تمامی حقوق این وب سایت متعلق به دیتا سنتر است. | قدرت گرفته از Blogroz.ir| طراح قالب Blogroz.ir
× بستن تبلیغات